GRAPH THEROY

Class: I M.Sc Maths

Subject: Graph Theory

Subject Code: P22MAE1A

Ms. R. VANAJA

Assistant Professor

PG & Research Department of Mathematics

Shrimati Indira Gandhi College

Trichy.

Defintiion:

A graph G consists a pair of (V(G), X(G)), where V(G) is a non-empty finite set whose elements are called **points or vertices** and X(G) is another set of unordered pairs of distinct elements of V(G). The elements of X(G) are called **lines or edges** of the graph.

If $x = \{u, v\} \in X$ then the line x said to join u and v. The points u and v are said to **adjacent** if x = uv. The points u and the line x are **incident** with each other.

If two distinct lines x and y are incident with a common point then they are called **adjacent** lines.

A graph with p points and q lines is called a (p, q) graph.

NOTE:

Denote V(G), = VX(G) = X

Directed Graph

A **directed graph** D is an ordered triple $(V(D), A(D), I_D)$ where V(D) is a nonempty set called the set of vertices of D, A(D) is a set disjoint from V(D) called the set of arcs of D and I_D is an incidence map that associates with each arc of D an ordered pair of vertices of D. If a is an **arc of D** and $I_D(a) = (u, v)$, u is called the **tail of a** and v is the **head of a**. The arc a is said to **join** v **with** u. u and v are called the **ends of a**. A directed graph is also called a **digraph**.

Underlying Graph and Orientation

With each digraph D there is an associate graph G (written G(D) when reference to D is needed) on the same vertex set as follows: Corresponding to each arc of D, there is an edge of G with the same ends. This graph G is called the **underlying graph of the digraph** D:

Conversely, given any graph G there is a digraph from G by specifying for each edge of G an order of its ends. Such a specification is called an **orientation** of G:

A digraph and its underlying graph are shown in Fig. 1.

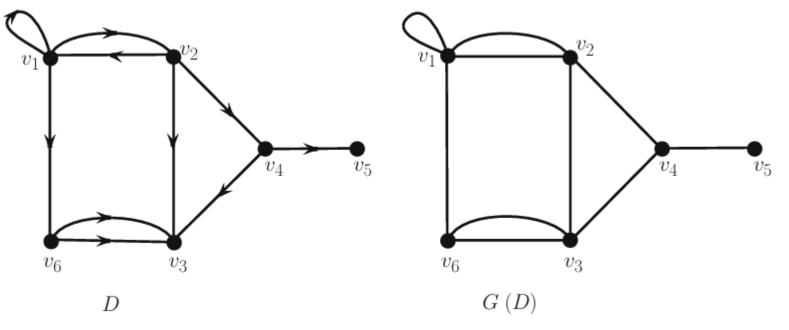


Fig. 1 Digraph D and its underlying graph G(D)

Definition

If a = (u, v) is an arc of D, a is said to be incident out of u and incident into v. v is called an **outneighbor** of u and u is called an **inneighbor** of v. N_D^+ denotes the set of outneighbors of u in D. Similarly, N_D^- denotes the set of inneighbors of u in D. When no explicit reference to D is needed, denote these sets by N_D^+ and N_D^- respectively. An **arc** a **is incident with** u if it is either incident into or incident out of u. An arc having the same ends is called a **loop** of D. The number of arcs incident out of a vertex v is the **outdegree of** v and is denoted by $d_D^+(v)$ or $d^+(v)$. The number of arcs incident into v is its **indegree** and is denoted by $d_D^-(v)$ or $d^-(v)'$

For the digraph D of Fig.1, $d^+(v_1) = 3$, $d^+(v_2) = 3$, $d^+(v_3) = 0$, $d^+(v_4) = 2$, $d^+(v_5) = 0$, $d^+(v_6) = 2$, $d^-(v_1) = 2$, $d^-(v_2) = 1$, $d^-(v_3) = 4$, $d^-(v_4) = 1$, $d^-(v_5) = 1$, $d^-(v_6) = 1$. The loop at v_1 contributes 1 each to $d^+(v_1)$ and $d^-(v_1)$

The **degree** $d_D(v)$ of a vertex v of a digraph D is the degree of v in G(D). Thus, $d(v) = d^+(v) + d^-(v)$. As each arc of a digraph contributes 1 to the sum of the outdegrees and 1 to the sum of indegrees,

 $\sum_{v \in V(D)} d^+(v) = \sum_{v \in V(D)} d^-(v) = m(D) \text{ where } m(D) \text{ is the number of arcs of D.}$

A vertex of D is **isolated** if its degree is 0; it is **pendant** if its degree is 1. Thus, for a pendant vertex v either $d^+(v) = 1$ and $d^+(v) = 0$ or $d^+(v) = 0$ and $d^+(v) = 1$.

Definitions

- 1. A digraph is a D' subdigraph of a digraph D if $V(D') \subseteq V(D)$, $A(D') \subseteq A(D)$ and $I_{D'}$ is the restriction of I_D to A(D').
- 2. A **directed walk** joining the vertex v_0 to the vertex v_k in D is an alternating sequence $W = v_0 \ v_0 a_1 v_1 a_2 v_2 \dots a_k v_k$, $1 \le i \le k$ with a_i incident out of v_{i-1} and incident into v_i .

- 3. A vertex v is reachable from a vertex u of D if there is a directed path in D from u to v.
- 4. **Two vertices of D are diconnected** if each is reachable from the other in D. Clearly, diconnection is an equivalence relation on the vertex set of D, and if the equivalence classes are $V_1, V_2, ... V_{\omega}$, the subdigraphs of D induced by $V_1, V_2, ... V_{\omega}$ are called the dicomponents of D.
- 5. A digraph is diconnected (also called strongly-connected) if it has exactly one dicomponent. A diconnected digraph is also called a **strong digraph**.
- 6. A digraph is **strict** if its underlying graph is simple. A digraph D is **symmetric** if, whenever (u, v) is an arc of D, then (v, u) is also an arc of D.

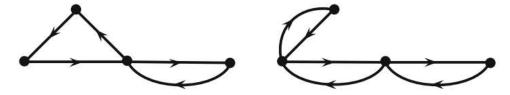


Fig. 2. A strong digraph (left) and symmetric digraph (right)

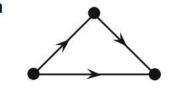
Tournaments

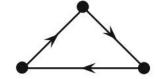
A digraph D is a **tournament** if its underlying graph is a complete graph. Thus, in a tournament, for every pair of distinct vertices u and v either (u, v) or (v, u), but not both is an arc of D.

Example

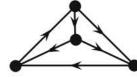
Suppose there are n players in a tournament and that every player is to play against every other player. The results of such a tournament can be represented by a tournament on n vertices, where the vertices represent the n players and an arc (u, v) represents the victory of player u over player v.

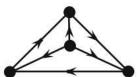
Suppose the players of a tournament have to be ranked. The corresponding digraph T, a tournament, could be used for such a ranking.


The ranking of the vertices of T is as follows:


One way of doing it is by looking at the sequence of outdegrees of T, because $d_T^+(v)$ stands for the number of players defeated by the player v.

Another way of doing it is by finding a directed Hamilton path, that is, a spanning directed path in


T. One could rank the players as per the sequence of this path so that each player defeats his or


her successor.

b

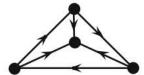


Fig.3. Tournaments on (a) three and (b) four vertices

Theorem 1

Every tournament contains a directed Hamilton path

Theorem 2 (Moon Theorem)

Every vertex of a disconnected tournament T on n vertices with $n \ge 3$ is contained in a directed k-cycle, $3 \le k \le n$ (T is then said to be vertex-pancylic)

Remark

Theorem 2 shows, in particular, that every disconnected tournament is Hamiltonian; that is, it contains a directed spanning cycle.

